Molecular dynamics of halogenated graphene - hexagonal boron nitride nanoribbons
نویسندگان
چکیده
منابع مشابه
Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches
Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapou...
متن کاملTOPICAL REVIEW Graphene on Hexagonal Boron Nitride
The field of graphene research has developed rapidly since its first isolation by mechanical exfoliation in 2004. Due to the relativistic Dirac nature of its charge carriers, graphene is both a promising material for next-generation electronic devices and a convenient low-energy testbed for intrinsically high-energy physical phenomena. Both of these research branches require the facile fabricat...
متن کاملEpitaxial growth of single-domain graphene on hexagonal boron nitride.
Hexagonal boron nitride (h-BN) has recently emerged as an excellent substrate for graphene nanodevices, owing to its atomically flat surface and its potential to engineer graphene's electronic structure. Thus far, graphene/h-BN heterostructures have been obtained only through a transfer process, which introduces structural uncertainties due to the random stacking between graphene and h-BN subst...
متن کاملSynthesis of hexagonal boron nitride graphene-like few layers.
Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li₃N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li₃N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than unde...
متن کاملThermal conductance of graphene/hexagonal boron nitride heterostructures
The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2016
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/738/1/012027